

High Performance Drill Selection Chart

Our industry leading high performance drill with the same high quality that helped set the standard.

Multipurpose high quality drill for most drilling applications adding stability, hole quality, tool life, and finish (excludes some work hardening materials).

An economical choice perfect for job shop and batch production work requiring a high performance drill option.

														Арр	lication Rec	ommendatio	ons				
Series	LU	Size Range Inch	Size Range mm	Margin	DC Tol.	DCONMS Tol.	Helix	SIG	Coolant Fed	DIN	Coating	TEMA* Sizes	Steel	Hardened Steel	Stainless Steel	PH Stainless Steel	Cast Iron	Titanium	High Temp Alloys		
CXDSS	Зx	#31-3/4	3.0-20.0	Double	m7	h6	30°	140°	Ν	6537K	ALtima® Plus	Х	1st	2nd	2nd	2nd	1st	2nd	2nd		
CXDSR	5x	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	Ν	6537L	ALtima® Plus	Х	1st	2nd	2nd	2nd	1st	2nd	2nd		
CXDCS	Зx	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	Y	6537K	ALtima® Plus	Х	1st	2nd	1st	2nd	1st	1st	2nd		
CXDCR	5x	#31-3/4	3.0-20.0	Double	m7	h6	30°	140°	Y	6537L	ALtima® Plus	X	1st	2nd	1st	2nd	1st	1st	2nd		
CXDCL	8x	#31-5/8	3.0-16.0	Double	m7	h6	30°	140°	Y		ALtima® Plus	Х	1st	2nd	1st	2nd	1st	1st	2nd		
CXDCE	15x	#31-15/32	3.0-12.0	Double	h7	h6	30°	140°	Y		ALtima® Plus		1st	2nd	1st	2nd	1st	1st	2nd		
2XDSS	Зx	#31-3/4	2.5-20.0	Single	h7	h6	30°	142°	Ν		ALtima®	Х	2nd	1st	1st	1st	2nd	1st	1st		
2XDSR	5x	1/64-5/8	0.5-16.0	Single	h7	h6	30°	142°	N		ALtima [®]	×	2nd	1st	1st	1st	2nd	1st	1st		
2XDCS	Зx	#31-5/8	3.0-16.0	Single	h7	h6	30°	142°	Y	6537K	ALtima [®]	Х	2nd	1st	2nd	1st	2nd	2nd	1st		
2XDCR	5x	#31-3/4	3.0-20.0	Single	h7	h6	30°	142°	Y		ALtima®	X	2nd	1st	2nd	1st	2nd	2nd	1st		
2XDCL	7+x	#31-1/2	3.0-12.0	Single	h7	h6	30°	142°	Y		ALtima®	Х	2nd	1st	2nd	1st	2nd	2nd	1st		
2XDCE	12- 17x**	1/4 - 1/2	5.0-12.0	Double	h7	h6	30°	142°	Y		ALtima®		2nd	1st	2nd	1st	2nd	2nd	1st		
HPDSS	Зx	#31-5/8	3.0-16.0	Single	h7	h6	30°	140°	Y	6537K	ALtima®		3rd	3rd	3rd	3rd	3rd	3rd	3rd		
HPDSR	5x	#31-5/8	3.0-16.0	Single	h7	h6	30°	140°	Ν	6537L	ALtima [®]		3rd	3rd	3rd	3rd	3rd	3rd	3rd		
HPDCS	Зx	#31-5/8	3.0-16.0	Single	h7	h6	30°	140°	Y	6537K	ALtima [®]		3rd	3rd	3rd	3rd	3rd	3rd	3rd		
	5x	#31-5/8	3 0-16 0	Single	h7	h6	30°	140°	Y	65371	∆l tima®		3rd	3rd	Brd	3rd	Brd	3rd	Brd		

Note: For drilling applications involving cross holes and/or optimal hole finishes, use the CXD style drill.

*TEMA - Tubular Exchange Manufacturer's Association

**Length varies depending on size.

	Inch		Inch	Inch								
DC	Tolerance (m7)	DC	Tolerance (h7)		DCONMS	Tolerance (h6)						
.00001181	+.00008/+.00047	.00001181	+0/00039		.00001181	+0/00024						
.11822362	+.00016/+.00063	.11822362	+0/00047		.11822362	+0/00031						
.23633937	+.00024/+.00083	.23633937	+0/00059		.23633937	+0/00035						
.39387087	+.00027/+.00098	.39387087	+0/00071		.39387087	+0/00043						
.70887500	+.00031/+.00114	.70887500	+0/00083		.70887500	+0/00051						

Met	ric (mm)	Met	ric (mm)	Metric (mm)								
DC	Tolerance (m7)	DC	Tolerance (h7)	DCONMS	Tolerance (h6)							
0 - 3.0	+.002/+.012	0 - 3.0	+0/010	0 - 3.0	+0/006							
3.01 - 6.0	+.004/+.016	3.01 - 6.0	+0/012	3.01 - 6.0	+0/008							
6.01 - 10.0	+.006/+.021	6.01 - 10.0	+0/015	6.01 - 10.0	+0/009							
10.01 - 18.0	+.007/+.025	10.01 - 18.0	+0/018	10.01 - 18.0	+0/011							
18.01 - 20.0	+.008/+.029	18.01 - 20.0	+0/021	18.01 - 20.0	+0/013							

M.A. Ford [®] Coating	Microhardness (HV)
ALtima [®]	3100
ALtima® Plus	3200
Temp.	ce Friction Coefficient
Temp.	Friction Coefficient F 0.42

Twister[®] Drill Icon Glossary

	Cutt	ing Calculations and Definitions	Metric	U.S.
ae	=	Width of cut, radial depth of cut	(mm)	(inch)
ар	=	Depth of cut, axial depth of cut	(mm)	(inch)
Dc	=	Cutter diameter	(mm)	(inch)
f	=	Feed per revolution	(mm/rev)	(IPR)
fz	=	Feed per tooth	(mm/tooth)	(IPT)
NOF	=	Number of teeth	Nur	mber
n	=	RPM	(rev/min)	(rev/min)
Q	=	Metal removal rate	(cm³/min)	(in³/min)
VC	=	Cutting speed	(m/min)	(SFM)
vf	=	Feed speed	(mm/min)	(IPM)
Dw	=	Working diameter	(mm)	(inch)

Formulas

Inch $\overline{\text{RPM}}$ (n) = SFM (vc) x 3.82/Tool Diam. $IPM (vf) = RPM (n) \times IPR (f)$

Conversion Inch to Metric SFM (vc) to m/min (vc) = SFM (vc) x .3048 IPM (vf) to mm/min (vf) = IPM (vf) x 25.4

Metric RPM (n) = m/min (vc) x 318.057/Tool Diam. mm/min (vf) = RPM (n) x mm/Revolution (f).

Conversion Metric to Inch m/min (vc) to SFM (vc) = (m/min)/.3048 mm/min (vf) to IPM (vf) = (mm/min)/25.4

Safety Note

Always wear the appropriate personal protective equipment such as safety glasses and protective clothing when using solid carbide or HSS cutting tools. Machines should be fully guarded.

Drill Troubleshooting

																	Prol	olem															
		Tool Deterioratio													(For	Chip mat	ion	Tool Life	Workpiece										Pr	oce	55		
	Possible Solutions	Flank wear	Margin wear	Breakage	Flaking	Creater wear	Chisel edge wear	Corner chipping	Flute chipping	Cutting edge chipping	Cutting edge wear	Point center chipping	Rake face	Scoring on tool body	Long stringy	Varied chip form	Blue/brown chips	Tool Life	Undersized hole	Oversized hole	Poor alignment	Poor surface finish	Heavy burr breakout	Retract marks	Hole location	Hole straightness	Deflection	Point Deflection	Galling	Vibration	Abnormal noise	Chip packing	No drill penetration
	Reduce feed or reduce at exit	х		х			х	х	х	х		Х	х	х				х	х	х		х	х			х						х	
eed	Reduce feed at entrance			х															х			х			х		х					х	
∾ N	Consistent feed rate			х											х	х														х		х	
eed	Increase feed	х					х				х				х				х	х													
Sp	Reduce speed	Х	х			Х		Х			Х							Х	Х										Х		х	х	
	Increase speed																					х											
Ħ	Coolant mix		х	х	х					Х				х				Х	х			х	Х									х	
ola	Coolant increase flow	х		х			х	х		Х							х	Х	х			х	Х									х	
Ŭ	Coolant filter	х		х	х					Х								Х	х			х	Х									х	
	Workpiece clamp rigid		х	х			х	х		Х				х				Х		х	х	х	Х	х	х	х							х
	Collet accuracy			х						Х										х					х	х				Х			
_	Tool holder fit .0008			х						Х										х					х	х				Х			
etup	Alignment			Х						х										Х													х
Ñ	Peck drill			Х																													
	Concentricity		Х	Х	Х			Х	Х					Х							Х	Х		Х	Х	Х		Х		Х			
	Do not extract tool during peck							х																									

Technical data provided should be considered advisory only as variations may be necessary depending on the particular application.

sales@maford.com Back to Table of Contents

